Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pain ; 165(4): 908-921, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851391

RESUMO

ABSTRACT: Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein-protein interaction (PPI) networks based on pain-related sodium channels and develop a corresponding drug-target interaction network to identify potential lead compounds for pain management. To ensure reliable machine learning predictions, we carefully select 111 inhibitor data sets from a pool of more than 1000 targets in the PPI network. We employ 3 distinct machine learning algorithms combined with advanced natural language processing (NLP)-based embeddings, specifically pretrained transformer and autoencoder representations. Through a systematic screening process, we evaluate the side effects and repurposing potential of more than 150,000 drug candidates targeting Nav1.7 and Nav1.8 sodium channels. In addition, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced side effects.


Assuntos
Canais de Sódio Disparados por Voltagem , Humanos , Canais de Sódio Disparados por Voltagem/metabolismo , Dor/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
2.
ArXiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37502628

RESUMO

Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein-protein interaction (PPI) networks based on pain-related sodium channels and develop a corresponding drug-target interaction (DTI) network to identify potential lead compounds for pain management. To ensure reliable machine learning predictions, we carefully select 111 inhibitor datasets from a pool of over 1,000 targets in the PPI network. We employ three distinct machine learning algorithms combined with advanced natural language processing (NLP)-based embeddings, specifically pre-trained transformer and autoencoder representations. Through a systematic screening process, we evaluate the side effects and repurposing potential of over 150,000 drug candidates targeting Nav1.7 and Nav1.8 sodium channels. Additionally, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced side effects.

3.
Chem Rev ; 123(13): 8736-8780, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384816

RESUMO

Small data are often used in scientific and engineering research due to the presence of various constraints, such as time, cost, ethics, privacy, security, and technical limitations in data acquisition. However, big data have been the focus for the past decade, small data and their challenges have received little attention, even though they are technically more severe in machine learning (ML) and deep learning (DL) studies. Overall, the small data challenge is often compounded by issues, such as data diversity, imputation, noise, imbalance, and high-dimensionality. Fortunately, the current big data era is characterized by technological breakthroughs in ML, DL, and artificial intelligence (AI), which enable data-driven scientific discovery, and many advanced ML and DL technologies developed for big data have inadvertently provided solutions for small data problems. As a result, significant progress has been made in ML and DL for small data challenges in the past decade. In this review, we summarize and analyze several emerging potential solutions to small data challenges in molecular science, including chemical and biological sciences. We review both basic machine learning algorithms, such as linear regression, logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), kernel learning (KL), random forest (RF), and gradient boosting trees (GBT), and more advanced techniques, including artificial neural network (ANN), convolutional neural network (CNN), U-Net, graph neural network (GNN), Generative Adversarial Network (GAN), long short-term memory (LSTM), autoencoder, transformer, transfer learning, active learning, graph-based semi-supervised learning, combining deep learning with traditional machine learning, and physical model-based data augmentation. We also briefly discuss the latest advances in these methods. Finally, we conclude the survey with a discussion of promising trends in small data challenges in molecular science.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Algoritmos , Fontes de Energia Elétrica , Redes Neurais de Computação
4.
J Chem Inf Model ; 63(5): 1472-1489, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36826415

RESUMO

Drug addiction is a global public health crisis, and the design of antiaddiction drugs remains a major challenge due to intricate mechanisms. Since experimental drug screening and optimization are too time-consuming and expensive, there is urgent need to develop innovative artificial intelligence (AI) methods for addressing the challenge. We tackle this challenge by topology-inferred drug addiction learning (TIDAL) built from integrating multiscale topological Laplacians, deep bidirectional transformer, and ensemble-assisted neural networks (EANNs). Multiscale topological Laplacians are a novel class of algebraic topology tools that embed molecular topological invariants and algebraic invariants into its harmonic spectra and nonharmonic spectra, respectively. These invariants complement sequence information extracted from a bidirectional transformer. We validate the proposed TIDAL framework on 22 drug addiction related, 4 hERG, and 12 DAT data sets, which suggests that the proposed TIDAL is a state-of-the-art framework for the modeling and analysis of drug addiction data. We carry out cross-target analysis of the current drug addiction candidates to alert their side effects and identify their repurposing potentials. Our analysis reveals drug-mediated linear and bilinear target correlations. Finally, TIDAL is applied to shed light on relative efficacy, repurposing potential, and potential side effects of 12 existing antiaddiction medications. Our results suggest that TIDAL provides a new computational strategy for pressingly needed antisubstance addiction drug development.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Transtornos Relacionados ao Uso de Substâncias , Humanos , Inteligência Artificial , Algoritmos , Redes Neurais de Computação , Desenvolvimento de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA